The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases.

Nutrients. 2020;12(3)
Full text from:

Plain language summary

Cardiovascular disease (CVD) is the leading non-communicable disease and cause of death worldwide. The human microbiome can exert direct influences on bodily functions and in recent years much attention has been drawn to the significance of these microorganisms and their role in disease development. Divergences of microbiome patterns are also implicated in the progression and pathogenesis of CVD. This review describes the connection between host microbiota and CVD development. Elaborated are some of the potential mechanisms by which the microbiota and their associated metabolites can directly influence vascular tone and contribute to high blood pressure. More indirect processes, such as microbiota-mediated inflammation, insulin resistance and obesity are also accounted for. Furthermore, the authors discuss modulation of the microbiome composition as potential target for therapeutic interventions. Known influences that alter the microbiome are diet patterns, specific compounds such as probiotics, fish oils and polyphenols, physical activity and novel technologies like faecal transplants. This review outlines the many ways in which the microbiome can contribute to the development of CVD. Summarised are key points to consider in clinical practice, when navigating CVD and its microbiome associated risks factors.

Abstract

The importance of gut microbiota in health and disease is being highlighted by numerous research groups worldwide. Atherosclerosis, the leading cause of heart disease and stroke, is responsible for about 50% of all cardiovascular deaths. Recently, gut dysbiosis has been identified as a remarkable factor to be considered in the pathogenesis of cardiovascular diseases (CVDs). In this review, we briefly discuss how external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension. We will also be examining the microbiota as a therapeutic target in the prevention of CVDs and the beneficial mechanisms of probiotic administration related to cardiovascular risks. All these new insights might lead to novel analysis and CVD therapeutics based on the microbiota.

Lifestyle medicine

Patient Centred Factors : Mediators/Intestinal and oral microbiome
Environmental Inputs : Nutrients ; Physical exercise ; Microorganisms
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Journal Article ; Review

Metadata